Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon
نویسندگان
چکیده
Wear in self-mated tetrahedral amorphous carbon (ta-C) films is studied by molecular dynamics and nearedge X-ray absorption fine structure spectroscopy. Both theory and experiment demonstrate the formation of a soft amorphous carbon (a-C) layer with increased sp content, which grows faster than an a-C tribolayer found on selfmated diamond sliding under similar conditions. The faster sp ! sp transition in ta-C is explained by easy breaking of prestressed bonds in a finite, nanoscale ta-C region, whereas diamond amorphization occurs at an atomically sharp interface. A detailed analysis of the underlying rehybridization mechanism reveals that the sp ! sp transition is triggered by plasticity in the adjacent a-C. Rehybridization therefore occurs in a region that has not yet experienced plastic yield. The resulting soft a-C tribolayer is interpreted as a precursor to the experimentally observed wear.
منابع مشابه
MAGNETISATION AND ELECTRON SPIN RESONANCE STUDIES OF TETRAHEDRAL AMORPHOUS CARBON
The magnetisation and electron spin resonance (ESR) spectrum of two specimens of tetrahedral amorphous carbon (ta-C), deposited from a filtered cathodic arc, were measured over a wide temperature range. The magnetisation was found to consist of superparamagnetic, paramagnetic and diamagnetic contributions. The superparamagnetic contribution resembled that recently found in carbon prepared from ...
متن کاملInfluence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon Thin Films
Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetra...
متن کاملThermal Stability and Rehybridization of Carbon Bonding in Tetrahedral Amorphous Carbon
We preform a quantitative investigation of the energetics of thermally induced sp3 → sp2 conversion of carboncarbon bonds in tetrahedral amorphous carbon (ta-C) films by using near edge x-ray absorption fine structure (NEXAFS) and Raman spectroscopy. We investigate the evolution of the bonding configuration in ta-C thin films subjected to high temperature annealing in flowing Argon gas using a ...
متن کاملComparing hardness and wear data for tetrahedral amorphous carbon and hydrogenated amorphous carbon thin films
We compared nanoindentation and nanoscratch testing of 10 and 50 nm thick tetrahedral amorphous carbon (ta-C) and hydrogenated amorphous carbon (a-C:H). Raman spectroscopy shows the expected spectral features for the two carbon forms, however, luminescence from the ceramic substrate can alter the spectra. We find that hard ta-C films can blunt the diamond tip and hence use a tip area function r...
متن کاملOrigin of ultralow friction and wear in ultrananocrystalline diamond.
The impressively low friction and wear of diamond in humid environments is debated to originate from either the stability of the passivated diamond surface or sliding-induced graphitization/rehybridization of carbon. We find ultralow friction and wear for ultrananocrystalline diamond surfaces even in dry environments, and observe negligible rehybridization except for a modest, submonolayer amou...
متن کامل